Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35567260

RESUMEN

Coastal wetlands are dynamic ecosystems that exist along a landscape continuum that can range from freshwater forested wetlands to tidal marsh to mudflat communities. Climate-driven stressors, such as sea-level rise, can cause shifts among these communities, resulting in changes to ecological functions and services. While a growing body of research has characterized the landscape-scale impacts of individual climate-driven stressors, little is known about how multiple stressors and their potential interactions will affect ecological functioning of these ecosystems. How will coastal wetlands respond to discrete climate disturbances, such as hurricane sediment deposition events, under future conditions of elevated atmospheric CO2? Will these responses vary among the different wetland communities? We conducted experimental greenhouse manipulations to simulate sediment deposition from a land-falling hurricane under future elevated atmospheric CO2 concentrations (720 ppm CO2). We measured responses of net primary production, decomposition, and elevation change in mesocosms representing four communities along a coastal wetland landscape gradient: freshwater forested wetland, forest/marsh mix, marsh, and mudflat. When Schoenoplectus americanus was present, above- and belowground biomass production was highest, decomposition rates were lowest, and wetland elevation gain was greatest, regardless of CO2 and sediment deposition treatments. Sediment addition initially increased elevation capital in all communities, but post-deposition rates of elevation gain were lower than in mesocosms without added sediment. Together these results indicate that encroachment of oligohaline marshes into freshwater forested wetlands can enhance belowground biomass accumulation and resilience to sea-level rise, and these plant-mediated ecosystem services will be augmented by periodic sediment pulses from storms and restoration efforts.

2.
Glob Chang Biol ; 24(3): 1224-1238, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29044820

RESUMEN

To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table-marker horizon system. Comparison of land movement with relative sea-level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub-root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small-scale disturbance of the plant canopy also had no effect on elevation trajectories-contrary to work in peat-forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea-level rise.


Asunto(s)
Cambio Climático , Humedales , Avicennia/fisiología , Congelación , Mississippi , Poaceae/crecimiento & desarrollo , Ríos , Suelo
3.
PLoS One ; 12(9): e0183431, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28902904

RESUMEN

Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.


Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente/normas , Agua de Mar , Humedales , Alabama , Monitoreo del Ambiente/métodos , Florida , Golfo de México , Servicios de Información/organización & administración , Servicios de Información/normas , Louisiana , Mississippi , Proyectos de Investigación/normas , Muestreo , Texas
4.
New Phytol ; 202(1): 19-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24251960

RESUMEN

Mangroves are among the most well described and widely studied wetland communities in the world. The greatest threats to mangrove persistence are deforestation and other anthropogenic disturbances that can compromise habitat stability and resilience to sea-level rise. To persist, mangrove ecosystems must adjust to rising sea level by building vertically or become submerged. Mangroves may directly or indirectly influence soil accretion processes through the production and accumulation of organic matter, as well as the trapping and retention of mineral sediment. In this review, we provide a general overview of research on mangrove elevation dynamics, emphasizing the role of the vegetation in maintaining soil surface elevations (i.e. position of the soil surface in the vertical plane). We summarize the primary ways in which mangroves may influence sediment accretion and vertical land development, for example, through root contributions to soil volume and upward expansion of the soil surface. We also examine how hydrological, geomorphological and climatic processes may interact with plant processes to influence mangrove capacity to keep pace with rising sea level. We draw on a variety of studies to describe the important, and often under-appreciated, role that plants play in shaping the trajectory of an ecosystem undergoing change.


Asunto(s)
Adaptación Fisiológica , Océanos y Mares , Rhizophoraceae/fisiología , Árboles/fisiología , Ecosistema , Suelo
5.
Am J Bot ; 98(12): 1943-55, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22074775

RESUMEN

PREMISE OF THE STUDY: Climate warming is predicted to have far-reaching effects on the distribution of species, but those effects may depend on the flexibility of regenerating species in responding to climate gradients. We conducted a study to determine whether the variation in the response of seed banks to temperature varied across the latitudinal range of Taxodium distichum swamps in North America. METHODS: The soil was collected in a long-term research network and heated experimentally to three current-day spring normal soil temperatures (average maximum daily spring normal soil temperatures during May in Illinois, Arkansas, and Louisiana, USA, respectively: 22°, 25°, and 29°C). A "normal" is the mean temperature calculated over a 30-yr interval (1971-2000). Seed-bank density and biomass responses were examined in relation to latitude and difference in the soil temperature of the experiment and the spring normal. KEY RESULTS: Using first- and second-order regression analysis, we determined that the variation in total germination density was lowest mid-range and in experimental soil temperatures similar to the spring normal. For some dominant species, the variance in germination density was higher in the northern (Cephalanthus occidentalis) or the southern part of the network (Saururus cernuus and Polygonum pensylvanicum). Overall, the variance of total biomass (root, shoot, whole plant) was higher if the experimental soil temperature was warmer than the spring normal. CONCLUSIONS: Our results suggest that the regeneration of some populations of swamp species may have more flexibility to respond to climate warming than others.


Asunto(s)
Agua Dulce , Geografía , Semillas/fisiología , Suelo , Taxodium/fisiología , Temperatura , Análisis de Varianza , Biomasa , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Análisis de Regresión , Plantones/crecimiento & desarrollo , Especificidad de la Especie , Estados Unidos
6.
BMC Plant Biol ; 10: 23, 2010 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-20141632

RESUMEN

BACKGROUND: Cattail (Typha domingensis) has been spreading in phosphorus (P) enriched areas of the oligotrophic Florida Everglades at the expense of sawgrass (Cladium mariscus spp. jamaicense). Abundant evidence in the literature explains how the opportunistic features of Typha might lead to a complete dominance in P-enriched areas. Less clear is how Typha can grow and acquire P at extremely low P levels, which prevail in the unimpacted areas of the Everglades. RESULTS: Apparent P uptake kinetics were measured for intact plants of Cladium and Typha acclimated to low and high P at two levels of oxygen in hydroponic culture. The saturated rate of P uptake was higher in Typha than in Cladium and higher in low-P acclimated plants than in high-P acclimated plants. The affinity for P uptake was two-fold higher in Typha than in Cladium, and two- to three-fold higher for low-P acclimated plants compared to high-P acclimated plants. As Cladium had a greater proportion of its biomass allocated to roots, the overall uptake capacity of the two species at high P did not differ. At low P availability, Typha increased biomass allocation to roots more than Cladium. Both species also adjusted their P uptake kinetics, but Typha more so than Cladium. The adjustment of the P uptake system and increased biomass allocation to roots resulted in a five-fold higher uptake per plant for Cladium and a ten-fold higher uptake for Typha. CONCLUSIONS: Both Cladium and Typha adjust P uptake kinetics in relation to plant demand when P availability is high. When P concentrations are low, however, Typha adjusts P uptake kinetics and also increases allocation to roots more so than Cladium, thereby improving both efficiency and capacity of P uptake. Cladium has less need to adjust P uptake kinetics because it is already efficient at acquiring P from peat soils (e.g., through secretion of phosphatases, symbiosis with arbuscular mycorrhizal fungi, nutrient conservation growth traits). Thus, although Cladium and Typha have qualitatively similar strategies to improve P-uptake efficiency and capacity under low P-conditions, Typha shows a quantitatively greater response, possibly due to a lesser expression of these mechanisms than Cladium. This difference between the two species helps to explain why an opportunistic species such as Typha is able to grow side by side with Cladium in the P-deficient Everglades.


Asunto(s)
Cyperaceae/metabolismo , Ecosistema , Fósforo/metabolismo , Typhaceae/metabolismo , Cyperaceae/anatomía & histología , Florida , Cinética , Nitrógeno/metabolismo , Typhaceae/anatomía & histología
7.
Ann Bot ; 105(1): 175-84, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19748907

RESUMEN

BACKGROUND AND AIMS: In the Florida Everglades, the expansion of cattail (Typha domingensis) into areas once dominated by sawgrass (Cladium jamaicense) has been attributed to altered hydrology and phosphorus (P) enrichment. The objective of this study was to quantify the interactive effects of P availability and soil redox potential (Eh) on the growth and nutrient responses of Typha, which may help to explain its expansion. METHODS: The study examined the growth and nutrient responses of Typha to the interactive effects of P availability (10, 80 and 500 microg P L(-1)) and Eh level (-150, +150 and +600 mV). Plants were grown hydroponically in a factorial experiment using titanium (Ti(3+)) citrate as a redox buffer. KEY RESULTS: Relative growth rate, elongation, root-supported tissue/root ratio, leaf length, lateral root length and biomass, as well as tissue nutrient concentrations, were all adversely affected by low Eh conditions. P availability compensated for the negative effect of low Eh for all these variables except that low P stimulated root length and nutrient use efficiency. The most growth-promoting treatment combination was 500 microg P L(-1)/ + 600 mV. CONCLUSIONS: These results, plus previous data on Cladium responses to P/Eh combinations, document that high P availability and low Eh should benefit Typha more than Cladium as the growth and tissue nutrients of the former species responded more to excess P, even under highly reduced conditions. Therefore, the interactive effects of P enrichment and Eh appear to be linked to the expansion of Typha in the Everglades Water Conservation Area 2A, where both low Eh and enhanced phosphate availability have co-occurred during recent decades.


Asunto(s)
Fosfatos/metabolismo , Typhaceae/crecimiento & desarrollo , Typhaceae/metabolismo , Biomasa , Nitrógeno/metabolismo , Oxidación-Reducción , Fósforo/metabolismo , Suelo
8.
Proc Natl Acad Sci U S A ; 106(15): 6182-6, 2009 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-19325121

RESUMEN

Tidal wetlands experiencing increased rates of sea-level rise (SLR) must increase rates of soil elevation gain to avoid permanent conversion to open water. The maximal rate of SLR that these ecosystems can tolerate depends partly on mineral sediment deposition, but the accumulation of organic matter is equally important for many wetlands. Plant productivity drives organic matter dynamics and is sensitive to global change factors, such as rising atmospheric CO(2) concentration. It remains unknown how global change will influence organic mechanisms that determine future tidal wetland viability. Here, we present experimental evidence that plant response to elevated atmospheric [CO(2)] stimulates biogenic mechanisms of elevation gain in a brackish marsh. Elevated CO(2) (ambient + 340 ppm) accelerated soil elevation gain by 3.9 mm yr(-1) in this 2-year field study, an effect mediated by stimulation of below-ground plant productivity. Further, a companion greenhouse experiment revealed that the CO(2) effect was enhanced under salinity and flooding conditions likely to accompany future SLR. Our results indicate that by stimulating biogenic contributions to marsh elevation, increases in the greenhouse gas, CO(2), may paradoxically aid some coastal wetlands in counterbalancing rising seas.


Asunto(s)
Dióxido de Carbono/química , Efecto Invernadero , Agua de Mar , Biomasa
9.
Ecol Appl ; 17(6): 1678-93, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17913132

RESUMEN

Plant communities along tropical coastlines are often affected by natural and human disturbances, but little is known about factors influencing recovery. We focused on mangrove forests, which are among the most threatened ecosystems globally, to examine how facilitation by herbaceous vegetation might improve forest restoration after disturbance. We specifically investigated whether recovery of mangrove forests in harsh environments is accelerated by nurse plants and whether the beneficial effects are species-specific. Quantification of standardized effects allowed comparisons across performance parameters and over time for: (1) net effect of each herbaceous species on mangrove survival and growth, (2) effects of pre- and post-establishment factors associated with each herbaceous species, and (3) need for artificial planting to enhance growth or survival of mangrove seedlings. Mangrove recruitment in a clear-cut forest in Belize was accelerated by the presence of Sesuvium portulacastrum (succulent forb) and Distichlis spicata (grass), two coastal species common throughout the Caribbean region. The net effect of herbaceous vegetation was positive, but the magnitude of effects on mangrove survival and growth differed by species. Because of differences in their vegetative structure and other features, species effects on mangroves also varied by mechanism: (1) trapping of dispersing propagules (both species), (2) structural support of the seedling (Distichlis), and/or (3) promotion of survival (Sesuviumn) or growth (Distichlis) through amelioration of soil conditions (temperature, aeration). Artificial planting had a stronger positive effect on mangrove survival than did edaphic conditions, but planting enhanced mangrove growth more in Sesuvium than in Distichlis patches. Our study indicates that beneficial species might be selected based on features that provide multiple positive effects and that species comparisons may be improved using standardized effects. Our findings are not only relevant to the coastal environments found in the Caribbean region, but our assessment methods may be useful for developing site-specific information to restore disturbed mangrove forests worldwide, especially given the large pool of mangrove associates (>45 genera) available for screening.


Asunto(s)
Ecosistema , Rhizophoraceae/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Aizoaceae/crecimiento & desarrollo , Región del Caribe , Geografía , Poaceae/crecimiento & desarrollo , Dinámica Poblacional , Especificidad de la Especie , Humedales
10.
Oecologia ; 134(3): 405-14, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12647149

RESUMEN

The objectives of this study were to determine effects of nutrient enrichment on plant growth, nutrient dynamics, and photosynthesis in a disturbed mangrove forest in an abandoned mosquito impoundment in Florida. Impounding altered the hydrology and soil chemistry of the site. In 1997, we established a factorial experiment along a tree-height gradient with three zones, i.e., fringe, transition, dwarf, and three fertilizer treatment levels, i.e., nitrogen (N), phosphorus (P), control, in Mosquito Impoundment 23 on the eastern side of Indian River. Transects traversed the forest perpendicular to the shoreline, from a Rhizophora mangle-dominated fringe through an Avicennia germinans stand of intermediate height, and into a scrub or dwarf stand of A. germinans in the hinterland. Growth rates increased significantly in response to N fertilization. Our growth data indicated that this site is N-limited along the tree-height gradient. After 2 years of N addition, dwarf trees resembled vigorously growing saplings. Addition of N also affected internal dynamics of N and P and caused increases in rates of photosynthesis. These findings contrast with results for a R. mangle-dominated forest in Belize where the fringe is N-limited, but the dwarf zone is P-limited and the transition zone is co-limited by N and P. This study demonstrated that patterns of nutrient limitation in mangrove ecosystems are complex, that not all processes respond similarly to the same nutrient, and that similar habitats are not limited by the same nutrient when different mangrove forests are compared.


Asunto(s)
Avicennia/metabolismo , Avicennia/fisiología , Ecosistema , Nitrógeno/farmacocinética , Fósforo/farmacocinética , Avicennia/crecimiento & desarrollo , Belice , Florida , Nitrógeno/análisis , Fotosíntesis/fisiología , Hojas de la Planta/química , Distribución Aleatoria , Suelo/análisis , Árboles
11.
Am J Bot ; 90(5): 736-48, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-21659170

RESUMEN

Expansion of Typha domingensis into areas previously dominated by Cladium jamaicense in the Florida Everglades has been linked to anthropogenic phosphorus (P) enrichment and increased hydroperiod. The principal stress factor for plants in flooded soils is biochemical reduction, the intensity of which is measured as redox potential (Eh). The objective of this study was to assess the growth response of C. jamaicense to Eh (-150, +150, and +600 mV) and P availability (10, 80, and 500 µg P/L). Plants were grown hydroponically in a factorial experiment using titanium (Ti(3+)) citrate as an Eh buffer. Treatment effects on growth, biomass partitioning, and tissue nutrients were recorded. Growth approximately doubled in response to a 50-fold increase in P availability. Low redox significantly reduced growth and tissue P concentration. While plant P concentrations increased 20-fold between the 10 and 500 µg P/L treatments, P concentrations were 50-100% higher at +600 mV than at -150 mV within each phosphate level. At high Eh, C. jamaicense appears well adapted to low nutrient environments because of its low P requirement and high retention of acquired P. However, at low Eh the ability to acquire or conserve acquired P decreases and as a consequence, higher phosphate levels are required to sustain growth. Findings of this study indicate that young C. jamaicense exhibits low tolerance to strongly reducing conditions when phosphate is scarce.

12.
Tree Physiol ; 16(11_12): 883-889, 1996.
Artículo en Inglés | MEDLINE | ID: mdl-14871780

RESUMEN

Seedlings of Rhizophora mangle L., Avicennia germinans (L.) Stearn., and Laguncularia racemosa (L.) Gaertn. f. were cultured in aerated or N(2)-purged solution for 12 weeks to assess their relative responses to low oxygen tensions. All three species responded to low oxygen treatment by modifying physiological and morphological patterns to decrease carbon loss by root respiration. However, the extent to which seedling physiology and morphology were altered by low oxygen treatment differed among species. Maintenance of root oxygen concentrations, root respiration rates and root extension rates by R. mangle demonstrated an ability to avoid low oxygen stress with minimal changes in root morphology and physiology. In contrast, oxygen concentrations in A. germinans and L. racemosa roots declined from 16 to 5% or lower within 6 h of treatment. Root hypoxia led to significant decreases in respiration rates of intact root systems (31 and 53% below controls) and root extension rates (38 and 76% below controls) by A. germinans and L. racemosa, respectively, indicating a greater vulnerability of these species to low oxygen tensions in the root zone compared with R. mangle. I conclude that the relative performance of mangrove seedlings growing in anaerobic soils is influenced by interspecific differences in root aeration and concomitant effects on root morphology and physiology.

13.
Oecologia ; 101(4): 448-460, 1995 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28306959

RESUMEN

A field study was conducted to evaluate the relative importance of factors affecting seedling establishment and survival on a mangrove-dominated island in Belize. An examination of spatial patterns of seedling relative densities in relation to reproductive adults and physico-chemical conditions provided correlative information on factors affecting mangrove regeneration patterns. Distance from reproductive adults explained 89-94% of the variation in relative density of Rhizophora mangle seedlings, whereas availability of resources (light and NH4) explained 73-80% of variation in Avicennia germinans seedling relative density. Just after dispersal (December), 89% of the variation in Laguncularia racemosa seedling relative density was attributable to distance from reproductive adults, but 7 months later (July) 74% of the variation was explained by intensity of flooding- and salinity-related stresses. Survivorship (after 2.5 years) of propagules and seedlings of R. mangle and A. germinans transplanted to zones of contrasting physico-chemical conditions demonstrated that: (1) mortality was highest during the establishment phase and major causes were failure to strand before viability was lost, consumption by predators and desiccation; and (2) after establishment, differences in sensitivity to physicochemical stress factors such as flooding (A. germinans) and initial orientation of the seedling axis (R. mangle) exerted a further influence on seedling survival. The results indicate that seedling recruitment in these neotropical forests is strongly influenced by dispersal patterns, differential establishment abilities and effects of physico-chemical factors that vary with elevation and distance from the shoreline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...